Right Caputo Fractional Landau Inequalities
نویسنده
چکیده
Right Caputo fractional ∥·∥p-Landau type inequalities, p ∈ (1,∞] are obtained with applications on R−.
منابع مشابه
On Hadamard and Fej'{e}r-Hadamard inequalities for Caputo $small{k}$-fractional derivatives
In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.
متن کاملSome new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives
In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.
متن کاملFractional representation formulae and right fractional inequalities
Here we prove fractional representation formulae involving generalized fractional derivatives, Caputo fractional derivatives and Riemann–Liouville fractional derivatives. Then we establish Poincaré, Sobolev, Hilbert–Pachpatte and Opial type fractional inequalities, involving the right versions of the abovementioned fractional derivatives.
متن کاملFractional approximation by Cardaliaguet- Euvrard and Squashing neural network operators
This article deals with the determination of the fractional rate of convergence to the unit of some neural network operators, namely, the CardaliaguetEuvrard and ”squashing” operators. This is given through the moduli of continuity of the involved right and left Caputo fractional derivatives of the approximated function and they appear in the right-hand side of the associated Jackson type inequ...
متن کاملNabla discrete fractional calculus and nabla inequalities
Here we define a Caputo like discrete nabla fractional difference and we produce discrete nabla fractional Taylor formulae for the first time. We estimate their remaiders. Then we derive related discrete nabla fractional Opial, Ostrowski, Poincaré and Sobolev type inequalities .
متن کامل